Predicting Out-of-Hospital Death Using Insurance Claims Data

Jessica C. Young ¹, Debra E. Irwin², Ashley L. Cole², Virginia Pate¹, Michele Jonsson Funk¹ ¹Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, US ²IBM Watson Health TM Poster 271 Abstract 1865

Presented at the 34th International Conference on Pharmacoepidemiology & Therapeutic Risk Management August 24, 2018 Prague, Czech Republic

BACKGROUND

- Insurance claims data provide a rich resource for pharmacoepidemiology research.
- Without linkage to death certificate data, most insurance claims data only contain deaths that occur in hospital.
- Out-of-hospital deaths likely result in disenrollment; however, most disenrollment simply reflects a change in insurance provider.
- In the United States, an estimated 64% of deaths in those aged under 65 years, and 66% in those 65 years or older, occur out of hospital.

OBJECTIVES

To create a claims-based algorithm to distinguish between disenrollment due to out-of-hospital death and other types of disenrollment.

METHODS

STUDY POPULATION

- ≥ 365 days of continuous enrollment prior to disenrollment
- Last instance of disenrollment between 2006 2011

Data Source:

• 1% random sample IBM Watson Health MarketScan Commercial Claims and Encounters and Medicare Supplemental Databases, 2006-2011

Out-of-Hospital Death:

- Gold standard: Social security administration (SSA) death files
- Defined as death date within 30 days of insurance disenrollment

Statistical Analyses:

- Logistic regression to estimate adjusted odds ratios (aOR) and 95% confidence intervals (CI) for predictors of out-of-hospital death.
- Commercial Claims and Encounters (CCAE) and Medicare Supplemental (MDCR) populations were analyzed separately

Baseline Predictors of Death:

- Initial model included 169 predictors including demographics, medications, healthcare utilization, frailty indicators, comorbid conditions, and preventative care
 - Events measured in 0-30, 31-90, 91-182, and 183-365 days prior to disenrollment
- Final parsimonious model included 38 predictors
 - Healthcare utilization and flu shot measured in 0-90, and 91-365 days prior to disenrollment
 - All other events measured in 0-365 days prior to disenrollment

Figure 1. Flow chart describing cohort of disenrolled patients in the analysis.

CONCLUSIONS

- Death is a critical outcome for many research questions and a competing risk for all others.
- The rate of unobservable out-of-hospital death is 6.7 times that of observable inhospital death in the CCAE population, and 7.9 times in the MDCR population.
- Our preliminary models predicted out-of-hospital death with high specificity, with c-statistics of 0.94 and 0.91 in the CCAE and MDCR populations, respectively.
- These algorithms allow researchers to choose cutoffs of predicted probability to balance sensitivity and specificity, enabling quantitative bias analyses in claims-based pharmacoepidemiology studies.

RESULTS

Commercial Claims and Encounters (< 65 years of age) : N=51,206

Medicare Supplemental (≥ 65 years of age) : N=5,902

Selected Predictors	Mean %	OR (95% CI)		
Age - 5 years Male December 31 Disenrollment Hip Fracture Cancer Screening Mammogram Weakness Flu Shot (91-365 days prior) Chronic Liver Disease Heart Failure COPD Alcohol Abuse Pneumonia Ambulatory Life Support Home Oxygen Dementia Inpatient Hospitalization Home Hosptial Bed Acute Kidney Injury Cancer Emergency Room (0-90 days prior) Hospice Care (0-90 days prior)	Wean % 41.4 53.4% 36.4% 0.1% 19.4% 11.8% 0.6% 10.2% 1.3% 1.4% 6.2% 0.7% 0.4% 2.8% 0.5% 0.6% 7.2% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.3%	OR $(95\% \text{ CI})$ 1.47 (1.45-1.48) 1.63 (1.27-2.10) 0.17 (0.12-0.24) 0.42 (0.10-1.84) 0.56 (0.38-0.81) 0.56 (0.38-0.81) 0.62 (0.37-1.03) 0.73 (0.53-1.01) 1.36 (0.88-2.11) 1.43 (0.97-2.10) 1.54 (1.14-2.08) 1.82 (0.85-3.89) 1.97 (1.10-3.53) 1.98 (1.44-2.73) 2.00 (1.25-3.21) 2.25 (1.34-3.81) 2.41 (1.77-3.28) 2.66 (1.31-5.43) 3.27 (2.16-4.94) 4.20 (3.27-5.39) 5.40 (4.18-6.98) 17.5 (10.0-30.6)		
		C).0625	3

Figure 2. Odds Ratios for age, gender, and 20 strongest predictors of out-of-hospital death among the CCAE population.

Selected Predictors	Mean %	OR (95% CI)		
Age - 5 years	79.7	1.29 (1.27-1.30)		· •
Male	57.9%	1.31 (1.11-1.56)		
December 31 Disenrollment	54.3%	0.06 (0.05-0.07)	-	
Mammogram	11.4%	0.61 (0.38-0.99)		•
Anxiety	3.2%	0.72 (0.46-1.15)		
Hypertension	51.1%	0.73 (0.61-0.86)		- - -
Flu Shot (0-90 days prior)	6.3%	0.76 (0.48-1.22)		_
Emergency Room (91-365 days prior) 0.7%	1.23 (0.55-2.74)		
Acute Kidney Injury	8.8%	1.26 (0.96-1.64)		
Heart Failure	23.1%	1.26 (1.02-1.56)		
Ambulatory Life Support	28.2%	1.28 (1.03-1.59)		
Drug Dependence	1.3%	1.28 (0.37-4.43)		
COPD	21.1%	1.31 (1.07-1.61)		
Dementia	16.3%	1.39 (1.13-1.71)		
Depressoin	6.0%	1.41 (1.03-1.93)		
Substance Abuse	1.1%	1.44 (0.33-6.38)		
Inpatient Hospitalization	36.2%	1.67 (1.33-2.10)		_
Cancer	28.8%	1.73 (1.45-2.06)		
Alcohol	0.6%	1.76 (0.64-4.86)		
Home Hospital Bed	3.1%	1.84 (1.25-2.70)		_ _
Chronic Liver Disease	3.3%	1.85 (1.23-2.78)		_
Emergency Room (0-90 days prior)	25.0%	3.17 (2.60-3.86)		-•-
			0.03125	8

Figure 3. Odds Ratios for age, gender, and 20 strongest predictors of out-of-hospital death among the MDCR population.

Predicted	Percent of	DD\/	Sensitivity	Specificity
Probability	Disenrolled Patients	FFV		
0.012	10%	0.087	0.824	0.907
0.022	5%	0.160	0.759	0.958
0.074	2%	0.350	0.663	0.987
0.193	1%	0.551	0.522	0.995
C-statistic:	0.939			

Table 1. Algorithm performance using various cut points of predictive probability of out-of-hospital death among the CCAE population.

Predicted Probability	Percent of Disenrolled Patients	PPV	Sensitivity	Specificity
0.806	10%	0.812	0.294	0.974
0.869	5%	0.817	0.148	0.987
0.907	2%	0.856	0.062	0.996
0.923	1%	0.864	0.031	0.998
C-statistic:	0.912			

Table 2. Algorithm performance using various cut points of predictive probability of out-of-hospital death among the MDCR population.

DISCLOSURES

None of the authors have any conflicts of interest to declare with respect to this work. Funding for this project was supplied by the following sources:

JY received tuition and stipend support from NIH/NHLBI R01HL118255 (Jonsson Funk, PI). DI receives salary support from IBM Watson Health [™]. VP received salary support from The Center of Pharmacoepidemiology in the Department of Epidemiology, UNC (current members: : GlaxoSmithKline, UCB BioSciences, Merck, Shire). MJF receives salary support from: NIH/NHLBI R01HL118255 (Jonsson Funk, PI), NIH/NIA R01AG023178 (Stürmer, PI), NIH/NCATS UL1TR001111 (Buse/Carey, co-PIs), Astra Zeneca (Stürmer, PI), and Center for Pharmacoepidemiology in the Department of Epidemiology, UNC (current members: GlaxoSmithKline, UCB BioSciences, Merck, Shire).

The database infrastructure used for this project was funded by the Department of Epidemiology, UNC Gillings School of Global Public Health; the Cecil G. Sheps Center for Health Services Research, UNC; the CER Strategic Initiative of UNC's Clinical & Translational Science Award (UL1TR001111); and the UNC School of Medicine.

Contact:

Jessica.Young@unc.edu